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Abstract 

Lakes are key ecosystems within the global biogeosphere. However, the bottom-up controls on 

the biological productivity of lakes, including surface temperature, ice phenology, nutrient loads 

and mixing regime, are increasingly altered by climate warming and land-use changes. To better 20 

understand the environmental drivers of lake productivity, we assembled a dataset on 

chlorophyll-a concentrations, as well as associated water quality parameters and surface solar 

irradiance, for temperate and cold-temperate lakes experiencing seasonal ice cover. We 

developed a method to identify periods of rapid algal growth from in situ chlorophyll-a time 

series data and applied it to measurements performed between 1964 and 2019 across 357 lakes, 25 

predominantly located north of 40°. Long-term trends show that the algal growth windows have 

been occurring earlier in the year, thus potentially extending the growing season and increasing 

the annual productivity of northern lakes. The dataset is also used to analyze the relationship 

between chlorophyll-a growth rates and solar irradiance. Lakes of higher trophic status exhibit a 

higher sensitivity to solar radiation, especially at moderate irradiance values during spring. The 30 

lower sensitivity of chlorophyll-a growth rates to solar irradiance in oligotrophic lakes likely 

reflects the dominant role of nutrient limitation. Chlorophyll-a growth rates are significantly 

influenced by light availability in spring but not in summer and fall, consistent with a switch to 

top-down control of summer and fall algal communities. The growth window dataset can be used 

to analyze trends in lake productivity across the northern hemisphere or at smaller, regional 35 

scales. We present some general trends in the data and encourage other researchers to use the 

open dataset for their own research questions. 
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1 Introduction 40 

Lakes play an important role in the biogeochemical cycling of many elements (Battin et al., 

2008; Cole et al., 2007; O’Connell et al., 2020; Rousseaux and Gregg, 2013; Schindler, 1971). 

With over 100 million documented lakes on earth (Verpoorter et al., 2014), evidence indicates 

that the majority of global lakes are shallow with enough light and nutrients available to make 

them highly productive ecosystems (Downing et al., 2006; Wetzel, 2001). Lakes therefore 45 

represent active sites for the storage, transport, and transformation of carbon, nutrients (e.g., 

nitrogen, phosphorus, silicon, iron), and contaminants (e.g., mercury) along the freshwater 

continuum (Lauerwald et al., 2019; Tranvik et al., 2009). 

There are multiple bottom-up controls on lake primary productivity, including water 

temperature, ice phenology, nutrient concentrations, circulation, mixing regime, and solar 50 

radiation (Lewis, 2011). Stressors such as climate change and nutrient pollution can significantly 

impact these controls, altering the ecosystem structure and biogeochemical functioning of lakes 

(Jeppesen et al., 2020; Markelov et al., 2019). Changes affecting northern lakes include warmer 

water temperatures, enhanced stratification and hypoxia, nutrient enrichment, light attenuation 

by chromophoric organic matter, and increases in the relative abundance of toxic cyanobacteria 55 

in the phytoplankton community (Deng et al., 2018; Huisman and Hulot, 2005; Jeppesen et al., 

2003; Creed et al., 2018). For example, Lake Superior has seen an increase in primary 

production during the last century, together with increasing surface water temperatures and 

longer seasonal stratification and ice-free periods (O’Beirne et al., 2017). Other lakes are 

similarly experiencing increases in productivity. According to Lewis (2011), the current mean 60 

primary production of lakes is 260 g C m-2y-1, which is 162% higher than earlier estimations 

under historical baseline conditions. 

Phytoplankton (i.e., algae) are the main primary producers in lakes and generally make up the 

foundation of lentic food webs (Carpenter et al., 2016). Periods of high lake productivity 

coincide with a rapid increase in phytoplankton biomass. In extreme cases, algal blooms can 65 

reach hundreds to thousands of cells per milliliter (Henderson-Seller and Markland, 1987). These 

bloom events produce large quantities of decomposing organic matter that cause the expansion 

of hypoxic conditions within the lake (Watson et al., 2016). In harmful algal blooms, certain 

algal species also release hepatotoxic and neurotoxic compounds (Codd et al., 2005). Thus, 
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identifying trends in the timing and intensity of seasonal algal growth, and linking them to 70 

changes in environmental stressors, can help predict the future of lake productivity and assess the 

risk of undesirable algal blooms. 

Because it is challenging to measure algal population growth directly, chlorophyll-a is often used 

as a proxy for both the algae biomass and the associated primary production rate in lakes (Huot 

et al., 2007). Although other proxies have been developed (Lyngsgaard et al., 2017), chlorophyll-75 

a is the most common metric to characterize trends in algal biomass within and across lakes, 

especially in historical water quality records. Tett (1987) proposes a chlorophyll-a threshold of 

100 µgL-1 to define “exceptional” blooms”, Jonsson et al. (2009) use a threshold of 5 µgL-1 to 

identify a bloom, while Binding et al. (2021) flags an algal bloom when the chlorophyll-a 

concentrations extracted from satellite observations exceed 10 µgL-1. Such threshold values, 80 

however, do not take into account the baseline (i.e., no-bloom) chlorophyll-a concentration 

specific to a given lake, or the lake’s trophic status (German et al., 2017). Furthermore, focusing 

on harmful and nuisance algal blooms alone may mask the impact that a changing climate or 

other stressors may have on a lake’s overall biological productivity. 

Annual fluctuations in lake chlorophyll-a concentration are an indicator of the natural seasonal 85 

succession of algal species as a function of temperature, light, and nutrient availability 

(Lyngsgaard et al., 2017). For instance, in a dimictic lake algal growth in the spring tends to be 

controlled by these bottom-up controls, with light often being the primary limiting factor, while 

later in the summer or fall algal biomass may be more influenced by zooplankton grazing (i.e., a 

top-down control), while nutrient availability may overtake solar radiation as the limiting 90 

resource for growth (Lewis et al., 2018; Lyngsgaard et al., 2017; Scofield et al., 2020). 

A common approach for comparing chlorophyll-a trends across multiple lakes is to consider the 

maximum or mean annual chlorophyll-a concentrations. For example, Ho et al. (2020) used the 

Mann-Kendall trend test to analyze time series of annual maximum chlorophyll-a concentrations, 

while Shuvo et al. (2021) used a random forest regression approach to assess the relative 95 

importance of climatic versus non-climatic controls on mean chlorophyll-a concentrations. 

However, these approaches do not specifically look at the periods of the year when algal biomass 

is primarily determined by bottom-up controls and exhibits rapid growth. 

https://doi.org/10.5194/essd-2021-329

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 14 December 2021
c© Author(s) 2021. CC BY 4.0 License.



5 
 

Alternatively, the rate of change in chlorophyll-a concentration can be used to capture the timing 

of rapid increase in algal biomass associated with periods of high lake productivity. In this study, 100 

we refer to these periods as “growth windows”. The weeks leading up to a growth window are 

crucial to create the necessary environmental conditions that enable algal growth (Lewis et al., 

2018). Thus, to analyze trends in lake productivity one should consider environmental variables, 

such as surface water temperature, solar radiation and nutrient concentrations, both during and 

preceding the annual growth windows. 105 

Although the rate of chlorophyll-a concentration growth has been used to detect algal blooms 

within individual water bodies, for example in the San Roque reservoir (Germán et al., 2017), it 

has rarely been used across large temporal (i.e., more than a few years) and spatial (i.e., regional 

and up) scales. Here, we present a method for calculating seasonal chlorophyll-a growth rates 

and then create a dataset of these rates derived from in situ chlorophyll-a concentrations obtained 110 

in 357 lakes, most of which are at latitudes above 40° N. The entire dataset covers the period 

from 1964 to 2019, and further contains data on coincident bottom-up environmental control 

variables, including in situ surface solar radiation measurements. To illustrate the potential 

applications of the dataset, we present some general trends of the chlorophyll-a rates and their 

relationships with environmental variables. The dataset is made available as an open resource 115 

that other researchers are encouraged to use in their own work. 

2 Data and methods 

All data processing, visualizations, and analyses were carried out with Python (ver. 3.7.6; Python 

Software Foundation, 2021) using the pandas library (Reback et al., 2020), NumPy library 

(Harris et al., 2020), and Dplython library (Riederer, 2015), while QGIS/PYQGIS was used for 120 

all spatial data analyses (ver. 3.16; QGIS Development Team, 2021). 

2.1 Data acquisition, compilation, and quality control 

2.1.1 Lake data selection 

In situ chlorophyll-a concentrations and other lake physico-chemical data were collected from 

open source international, national, and regional databases. The data include surface water 125 

temperature, Secchi depth and pH, as well as the concentrations of particulate organic carbon 

(POC), total phosphorus (TP), soluble reactive phosphorus (SRP), total Kjeldahl nitrogen (TKN) 

and dissolved organic carbon (DOC). We selected lakes from latitudes ≥ 40° N to reduce the 
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latitude-dependent variability in mixing and thermal regimes, both of which exert a strong 

control on lake productivity (Kirillin et al., 2012). At mid-to-high latitudes most lakes are 130 

dimictic with seasonal ice cover while low-latitude lakes are typically meromictic or polymictic 

(Woolway and Merchant, 2019). High-elevation lakes at lower latitudes can experience similar 

effects from the transition from winter to spring, even without ice cover (Deng et al., 2020). We 

therefore included the extensively monitored Lake Kasumigaura in Japan and Lake Taihu in 

China in our study, although they are located at latitudes lower than 40°N. 135 

Chlorophyll-a measurements are collected at variable water depths by different lake monitoring 

agencies and researchers. For consistency, we only included measurements taken at ≤ 3 m depth. 

When the sampling depth was not provided, we assumed the sample was taken from within the 

top 0.5-3 m of the lake, given that this is standard sampling protocol (Dorset Environmental 

Science Centre, 2010; United States Environmental Protection Agency, 2012). 140 

We omitted all variable values below the corresponding analytical detection limit. Data from 

different sources were individually reformatted to yield consistent (standard) units and headings. 

Reported values were averaged to yield daily values mean before being combined into a single 

csv file. When multiple chlorophyll-a data types were available (as, for example, in the 

Laurentian Great Lakes data series), we selected the uncorrected data because most reported lake 145 

chlorophyll-a concentrations have not been corrected for phaeophytin pigments. If no 

coordinates were provided, we assigned those of the lake centroid in QGIS or estimated based on 

the location name. Fifteen lakes had no known location and were removed from the final dataset. 

We further restricted ourselves to lakes that were sampled at least 8 times per year. This was 

found to be the minimum number of sampling points required to detect the growth windows. The 150 

location of all lake sampling locations in the growth window dataset are shown in Figure 1. 

After the above selection and quality assessments, the final dataset used for calculating the 

growth windows contained 52116 unique data points (62% of the original data) for 357 lakes, all 

≥ 40°N (except Lake Kasumigaura and Lake Taihu), covering the period 1964-2019. 

2.1.2 Surface solar radiation data 155 

Open source in situ surface solar radiation (SSR) data for the period 1950-2020 were collected 

from stations paired with the selected lakes. Each lake was paired with the closest SSR station 

using the nearest neighbor function in QGIS, allowing for a maximum radius of three degrees 

https://doi.org/10.5194/essd-2021-329

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 14 December 2021
c© Author(s) 2021. CC BY 4.0 License.



7 
 

(Schwarz et al., 2018; Figure 1). In the dataset, the geodesic distance between each lake and its 

paired SSR station is given, as well as the difference in elevation. 160 

The SSR data temporal resolution varied from minutes to months. Hence, where needed, the SSR 

data were resampled to yield monthly mean values. For the Experimental Lakes Area (ELA) in 

Ontario, Canada, the data were converted from photosynthetically active radiation (PAR) to 

SSR, where the PAR wavelength range (400-700 nm) was averaged to 550 nm. 

2.1.3 Lake characteristics 165 

For each lake, we calculated the trophic status index (TSI) based on the mean chlorophyll-a 

concentration over the sampling period. This TSI value was used to assign the lake to the 

corresponding trophic state category according to Carlson and Simpson (1996). The 

HydroLAKES shapefile yielded the lake’s surface area, mean depth, elevation, and volume 

(Messager et al., 2016). The climate zone of the lake was extracted from the HydroATLAS 170 

shapefile (Linke et al., 2019).  

2.2 Detecting seasonal growth windows  

Growth windows were defined based on the rate of change in chlorophyll-a concentration at each 

lake sampling point throughout the year. To locate the start and end of a growth window, we 

smoothed the annual chlorophyll-a time series using a Savitzky-Golay filter (SciPy.signal 175 

savgol_filter) and flagged optima in the smoothed data (SciPy.signal find_peaks) using functions 

from the open source SciPy ecosystem (Virtanen et al., 2020). The procedure is illustrated in 

Figure 2.  

For each year, the spring growth window began when the daily rate of increase surpassed the 

threshold of 0.05 µgL-1day-1 for the first time. The 0.05 µgL-1day-1 rate was chosen because it 180 

corresponds to the median rate at which a distinct switch to a “rapid growth” period in the 

mesotrophic-hypereutrophic lakes in the dataset was observed. The growth window ended at the 

first “peak” in chlorophyll-a concentration. If a threshold rate of 0.05 µgL-1day-1 was never 

reached during a given year, the growth window began when the rate of change first became 

positive. The summer (or fall) window was identified in the same way following the end of the 185 

spring window. If there was only one peak in the smoothed data, only one growth window was 

identified for that year. This year was then labelled as a “single growth window” year (i.e., only 

https://doi.org/10.5194/essd-2021-329

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 14 December 2021
c© Author(s) 2021. CC BY 4.0 License.



8 
 

one major algal growth window occurred within that year). Years with more than three 

chlorophyll-a peaks, or with no peaks, were not included in the growth window dataset. 

Depending on data availability, the pre-growth window was defined as the one or two week 190 

period immediately preceding the growth window start date. For each pre-growth window, the 

mean surface water temperature, SSR, and TP concentration were calculated. These served as 

(simple) indicators of how favorable in-lake conditions were to initiate algal growth (Lyngsgaard 

et al., 2017). An example of a spring and summer growth window is shown in Figure 3. Note that 

we use the label “summer” to indicate the second yearly growth window, although in many cases 195 

the summer growth window occurred after the fall equinox.   

Once the growth window and pre-growth durations were determined, the mean values of the 

variables listed in Table 1 were calculated for both the growth window and the pre-growth 

window. This was done for each lake and for each year data were available. In the dataset, each 

row represents a single growth window and includes the timing and duration, rate of increase of 200 

the chlorophyll-a concentration, and all other relevant lake variables, including SSR. Note that, 

along with the variables in Table 1, we included the total number of samples collected each year 

so the dataset can be filtered for sampling frequency. The reader is referred to the supplementary 

information included with the dataset for a more detailed explanatory table with additional 

information on the organization carrying out the monitoring, physiological attributes of each 205 

lake, and years that data are available for a given sampling location. 

3 Dataset: data distributions 

3.1 Dataset characteristics 

Most lakes in the dataset are located between 50 and 60° N as the majority of available open data 

are from organizations within the United Kingdom, Sweden, Canada, and the United States. The 210 

years with available data in the dataset are unevenly distributed, however, with most detected 

growth windows falling in the period 2005-2019,  likely due to a combination of increased lake 

monitoring efforts and a push in recent years towards greater accessibility of publicly funded 

data (Hallegraeff et al., 2021; Roche et al., 2020; Figure 4a).  

The majority of growth windows recorded in the dataset fall in the eutrophic category (1.6% 215 

oligotrophic, 18.0% mesotrophic, 75.4% eutrophic, and 5.0% hypereutrophic). Single growth 
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windows dominate oligotrophic lakes where they make up 96% of all growth windows (Figure 

4b). This may reflect the severe nutrient limitation in oligotrophic lakes, which prevents the 

occurrence of a second annual algal growth window (Rigosi et al., 2014). Oligotrophic lakes also 

tend to occur at the higher latitudes (Figure 4c) where lower water temperatures and solar 220 

radiation may further limit algal growth (Lewis, 2011). 

The growth window durations range from 2 to 251 days, with a median of 71 days across all 

lakes (Figure 5a). Summer growth windows tend to be shorter than those of spring and single 

growth windows, with the latter exhibiting the most variable start and end dates (Figure 5b). 

3.2 Environmental conditions during growth windows 225 

Chlorophyll-a rates during the growth windows exhibit log-normal distributions (Figure 6a). The 

mean chlorophyll-a rate is lowest in the single growth window category and highest in the 

summer growth windows. Mean surface water temperature has a distinct bimodal spring-summer 

distribution (Figure 6b), which is expected for northern temperate and cold-temperate lakes 

where surface water temperature during the ice-free period follows the seasonal air temperature 230 

trend (Kirillin et al., 2012). For the single growth windows, temperature is evenly distributed 

across the annual range, which aligns with the large variability in the timing of single growth 

windows (Figure 5b). Total phosphorus concentrations are lowest during the spring growth 

windows, which likely reflects a greater control of P limitation on algal growth during spring 

compared to summer and fall (Kirillin et al., 2012; 6c). Secchi depth during the growth windows 235 

ranges from 0.01 to 14.6 m, with summer growth windows experiencing the lowest mean Secchi 

depth, as turbidity generally increases after the spring bloom (Figure 6d). 

4 Dataset: trend analyses  

The growth window delineation and the estimation of chlorophyll-a rates can in principle be 

applied to any lake for which time series chlorophyll-a concentration data are available. By 240 

creating a dataset comprising many lakes and covering multi-year time periods, it becomes 

possible to analyze global trends in lake productivity. Here, we provide a few illustrative 

examples of how the dataset can be interrogated, thereby setting the stage for its use by other 

researchers. 
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4.1 Chlorophyll-a rates: trophic status and latitude 245 

When grouped by trophic status, mean and median chlorophyll-a growth rates show the expected 

increase from oligotrophic to hypereutrophic lakes (Figure 7a). The rates in the different trophic 

categories, however, cover very large and overlapping ranges. When grouped according to 

latitude, lakes between 40 and 50° N exhibit the widest range in chlorophyll-a rates (Figure 7b) 

that, in part, reflects the high proportion of lakes in this latitude range. The highest latitude lakes 250 

(60-70° N) tend to have the lowest chlorophyll-a rates, which is expected given the cooler 

temperatures and lower solar irradiance they experience (Lewis, 2011).  

While differences in chlorophyll-a rates usually indicate comparable differences in algal biomass 

growth rates, it is important to note that the chlorophyll-a to biomass ratio varies within and 

among lakes. In particular, chlorophyll-a to biomass ratios are known to be sensitive to 255 

variations in solar irradiance and temperature (Behrenfeld et al., 2016). The summer ratio of 

chlorophyll-a to biomass (typically expressed as particulate organic carbon concentration) 

generally decreases with increasing latitude because the algae are adapted to the more variable 

daylight conditions, including longer summer photoperiods, at higher latitudes (Behrenfeld et al., 

2016). By contrast, cooler temperatures at higher latitudes may result in higher chlorophyll-a to 260 

biomass ratios because of lower growth rates, at least when the algae are nutrient-replete 

(Behrenfeld et al., 2016).  

4.2 Chlorophyll-a rates: temperature and climate warming 

The start and end dates of the spring, single and summer growth windows show temporal trends 

towards occurrence earlier in the year (Figure 8a). The trends are most pronounced for the spring 265 

windows, which likely reflects a greater sensitivity of springtime algal activity to climate 

warming. The latter causes earlier ice break-up and produces earlier surface water temperature 

conditions favorable for algal growth (Markelov et al., 2019). This hypothesis is consistent with 

the correlations between the chlorophyll-a rates and water temperature (Figure 8b).  

The start and end dates of the spring growth windows show a positive correlation with increasing 270 

temperature (Figure 8b). By contrast, little or even negative correlations are seen for the summer 

growth windows. Thus, all other conditions unchanged, a warmer climate would see earlier 

spring blooms, but little temporal shifts for the summer growth windows and, possibly, even a 

slight delay. For the spring and single growth windows, the duration of the window shows a 
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maximum around 10° C. Therefore, moderate temperatures close to 10° C should, on average, 275 

produce the longest lasting algal growth events. No dinstinct trend is seen for summer growth 

windows, presumably because they occur when water temperatures are already above 10° C.    

4.3 Chlorophyll-a rates: solar irradiance 

Solar radiation is essential for phytoplankton growth (Inomura et al., 2020). For example, at the 

single lake scale, Tian et al. (2017) showed that SSR is a major predictor of growing-season 280 

chlorophyll-a concentrations in the Western Basin of Lake Erie. A paleolimnological study of 

Lake Tanganyika also provided evidence for a positive correlation between multi-centennial 

oscillations of SSR and diatom productivity dating back to ~1000 CE (McGlue et al., 2020). 

Nonetheless, the relationship between algal growth and SSR has yet to be compared across a 

large set of lakes.  285 

Solar radiation is used directly by photosynthetic organisms for carbon fixation (Melkozernov 

and Blankenship, 2007). In addition, SSR exerts a strong control on lake surface water 

temperature (Jakkila et al., 2009) and the timing of ice breakup in seasonally ice-covered lakes  

(Kirillin et al., 2012b), both of which influence lake primary productivity. While the global 

distribution of mean annual SSR is primarily a function of latitude (Kirillin et al., 2012b), 290 

atmospheric controls (e.g., cloud cover) cause regional variability, as well as variability over 

time (Alpert and Kishcha, 2008; Cutforth and Judiesch, 2007; Wild, 2009). It is important to note 

that SSR is not related directly to global warming (Kirillin et al., 2012b), nor is it controlled by 

the cycles in the sun’s energy output (Wild, 2009). 

To determine to what extent SSR explains variations in chlorophyll-a growth rates, we removed 295 

the effect of temperature by normalizing the rates using the temperature dependency function 

(which we refer to as “ftemp”) proposed by Rosso et al. (1995). This function describes the non-

linear temperature dependence of cellular metabolic activity and requires that a minimum, 

maximum, and optimum growing temperature be assigned. Dividing the in situ chlorophyll-a 

rate during the growth window by the corresponding ftemp value corrects for the effect of 300 

differences in temperature between growth windows. 

The temperature-corrected chlorophyll-a growth rates indicate that the relationship between SSR 

and algal growth is a function of the trophic status (i.e., nutrient availability), as seen in Figure 9. 

Lakes of higher trophic status are more sensitive to SSR than lakes of lower trophic status. For 
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eutrophic lakes, the effect of SSR on the temperature-corrected chlorophyll-a rates is most 305 

pronounced in the low to moderate SSR range typical of the spring season (Figure 9a). The same 

effect is not seen when considering the rates without temperature correction (Figure 9b). Thus, 

the increasing SSR during spring is counterbalanced by cooler temperatures compared to the 

later summer growth window. Note that the summer chlorophyll-a growth rates show little 

influence from SSR, whether corrected or not for temperature, supporting the theory of a greater 310 

top-down control on algal growth during the summer versus the spring as proposed, among 

others, by Lyngsgaard et al. (2017). 

The chlorophyll-a growth rate data near or above 200 Wm-2 remain low, with no clear 

dependence on SSR.  This is likely indicative of a photoacclimation response of the algae, where 

they produce less chlorophyll-a in proportion to their total biomass so they can allocate more 315 

resources to growth when nutrients – not light – are limiting growth (Lewis et al., 2018; Inomura 

et al., 2020). Furthermore, when light intensity during the summer months reaches damaging 

levels, algae may start producing additional photosynthetic pigments to protect their chlorophyll 

(so-called sunscreen pigments). However, nutrient availability may limit the amount of pigments 

that can be synthesized, impeding the photoacclimation response (Lewis et al., 2018). This 320 

nutrient limitation of the photoacclimation response would explain the differences in the 

temperature corrected growth rate’s sensitivity to SSR as a function of trophic status (Figure 9a). 

Lakes of higher trophic status (i.e., less nutrient limitation) show a larger response to changes in 

SSR, presumably because they have sufficient nutrients to produce additional chlorophyll-a in 

response to an increase in SSR. 325 

5 Key findings 

The following points summarize the general trends that emerged from our analysis of the dataset.  

1. Higher water temperatures and reduced ice-cover cause algal growth windows to start earlier 

in the year, extending the growing season and potentially increasing annual net primary 

productivity of northern lakes under ongoing and future climate warming. 330 

2. Chlorophyll-a growth rates increase with nutrient availability while they decrease at higher 

latitudes due to cooler temperatures and lower SSR. 

3. Oligotrophic lakes tend to have the highest proportion of single annual growth windows, 

likely reflecting the dominant role of nutrient limitation.  
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4. Temperature-corrected chlorophyll-a growth rates suggest a relationship with SSR that 335 

depends on the trophic state of lakes: 

a. compared to mesotrophic and oligotrophic lakes, eutrophic lakes exhibit a higher 

sensitivity to SSR, especially in the low to moderate irradiance levels experienced 

during spring; 

b. at the upper end of SSR, chlorophyll-a growth rates remain low and independent of 340 

SSR, which may reflect a photoacclimation response of algae.   

5. The low SSR sensitivity of chlorophyll-a growth rates during summer and fall suggests a 

stronger top-down control on algal growth compared to the earlier spring growth windows.  

6. In summary, light limitation is an important control on chlorophyll-a growth rates during 

spring, whereas lower nutrient availability and increased grazing from zooplankton tend to be 345 

more significant during summer. 

6 Conclusions 

We present a novel way to delineate periods of rapid algal growth, or growth windows, in lakes 

based on time series chlorophyll-a measurements. We apply this approach to derive the 

chlorophyll-a growth rates occurring during the growth windows of 357 lakes from cold and 350 

cold-temperate regions in the northern hemisphere, using data collected between 1964 and 2019. 

The derived growth rates are assembled in an open-source dataset, together with additional 

information on the lakes including data on water quality, trophic state, and solar radiation. Note 

that the dataset can be paired with databases such as the HydroLAKES, HydroATLAS and 

GLCP databases to access additional lake and/or watershed attributes. Our dataset is designed to 355 

support comparative analyses of the controls on algal productivity within and between lakes. We 

present several examples of such analyses. We hope these will encourage others to use the 

dataset in their own research and to further expand the dataset’s geographical reach and 

information content.  

Code and data availability  360 

All code is available in the project GitHub repository 

(https://github.com/hfadams/growth_window)  and in Zenodo 

(https://doi.org/10.5281/zenodo.5171442). The growth window dataset and supplementary data 
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files are available in the Federated Research Data Repository at 

https://doi.org/10.20383/102.0488 (Adams et al., 2021). 365 
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Table 1: Summary of variables in the derived growth window dataset. 675 

 

 

 

Variable Units Description Comments 

Season NA Time of year when the growth 

window is detected: Spring, 

Summer, or Single growth 

window 

A single growth window occurs 

when there is no decrease in 

chlorophyll-a concentration 

between spring and summer 

Chlorophyll-a 

growth rate 

µgL-1day-1 Rate of increase in chlorophyll-a 

concentration between the start 

and end of the growth window 

Chlorophyll-a rate of change 

between sampling times are 

used to define the growth 

window period 

Specific 

chlorophyll-a rate 

day-1 Chlorophyll-a growth rate 

divided by initial concentration 

Can be compared across lakes 

Temperature-

corrected specific 

chlorophyll-a rate 

day-1 Temperature correction function 

provided in supplementary data   

Initial parameters: min 

temp=0°C, max temp=40°C, 

optimal temp=25°C 

POC growth rate mg L-1day-1 Rate of increase or decrease 

between consecutive sampling 

times 

Representative metric for the 

rate of change in total algal 

biomass 

Chlorophyll-a 

growth rate : POC 

growth rate 

mg chlorophyll-

a : mg POC 

 

 

Ratio of the chlorophyll-a and 

POC rates of change 

Can be used to see how the 

chlorophyll-a rate of production 

changes in proportion to total 

algal biomass  

Mean surface water 

temperature 

°C Mean value across the growth 

window and the 14-day pre-

growth window 

 

Surface solar 

radiation 

Wm-2 Mean value across the growth 

window and the 14-day pre-

growth window 

 

TP mg L-1  

 

Growth window mean values 

 

(co-)limiting macronutrients 

SRP mg L-1 

TKN mg L-1 

Secchi depth m Proxy for turbidity 

pH pH units  

Trophic Status 

Index (TSI) 

Range: from 0-

100 

Calculated from the mean 

chlorophyll-a concentration 

across all years the lake was 

sampled 

Used to assign trophic status 

Trophic status NA Trophic status class assigned 

based on TSI: Oligotrophic, 

Mesotrophic, Eutrophic, or 

Hypereutrophic 

TSI thresholds are those of the 

North American Lake 

Management Society 
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Figure 1: Distribution of the 357 lake sampling locations in the growth window dataset. Sampling points are clustered by 
proximity, where marker size and value indicate the number of unique locations represented by each point. Enlarged sections 680 
show each lake sampling location and along with the location of the 322 paired SSR stations. Base map credit: ESRI, 2011. 
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Figure 2: Workflow for detecting and processing growth window data. For each lake sampling point, chlorophyll-a (Chl-a) data 695 
are smoothed with a Savitzky-Golay filter and then growth windows are detected based on peaks in the chlorophyll-a 
concentration. Growth windows are flagged as spring, summer, or single growth windows. 
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Figure 3. Example of spring and summer growth windows in Lake Windermere’s north basin in 1988. Peaks in the smoothed 710 
data indicate the end of the growth window, and the window begins when the rate of increase in chlorophyll-a concentration 
surpasses a threshold of 0.05 µgL-1day-1 (median rate for the distinct switch to a “rapid growth” period in mesotrophic-
hypereutrophic lakes) for the first time. The growth window and pre-growth window (two weeks leading up to the growth 
window) are shown in blue and orange shading respectively. 

 715 

 

Figure 4.  Distributions of (a) year of occurrence, (b) lake trophic status index, and (c) lake latitude for each growth window in 
the dataset. Data are grouped by “double GW” or “single GW” year. The data is skewed toward more recent years and higher 
latitudes. Lakes in the oligotrophic category (TSI < 40) have the highest proportion of single growth windows. 

 720 
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Figure 5. Distributions of (a) duration and (b) timing of the growth windows, grouped by growth window type. Single growth 
windows have both the longest range in length and the most even distribution of start and end dates. 
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Figure 6. Distributions of selected water quality variables during the growth window period: (a) log chlorophyll-a rate, (b) mean 740 
water temperature, (c) log mean total phosphorus (TP), and (d) mean Secchi depth. 
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Figure 7. Chlorophyll-a growth rate trends in the dataset: grouped by (a) trophic status and (b) latitude. Lakes of a higher trophic 
status have higher mean chlorophyll-a growth rates and lakes at higher latitudes have lower chlorophyll-a growth rate during 
the growth windows. The number of lakes represented by each violin is shown in text on the panels. 

 

 755 

 

 

 

 

 760 

 

 

 

 

 765 

 

 

 

 

 770 

 

https://doi.org/10.5194/essd-2021-329

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 14 December 2021
c© Author(s) 2021. CC BY 4.0 License.



29 
 

Figure 8. (a) time series of the start and end dates for the spring, summer, and single growth windows for all the lakes in the 
dataset; all growth window categories trend toward earlier start and end dates, especially in the spring. (b) Start and end dates 
of the growth windows as a function of temperature (regression line in dark blue) suggest a positive relationship between 
growth window timing and surface water temperature in the spring and a negative relationship in the summer. Growth window 775 
length (dark blue trendline shows locally weighted scatterplot smoothing) shows that longer growth windows occur at moderate 
surface water temperatures that aren’t seen in the summer months. 
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Figure 9. Comparison of trends in the relationship between mean growth window SSR with (a) temperature corrected 780 
chlorophyll-a rate and (b) specific chlorophyll-a rate without temperature correction. Data are grouped by trophic status, and 
hue indicates growth window type. Lakes of a higher trophic status show an increased sensitivity to solar radiation, especially 
during the spring (panel A) while summer growth windows do not show sensitivity to solar radiation or water temperature, 
suggesting top-down control from zooplankton grazing. Low chlorophyll growth rates at SSR near or greater than 200 Wm-2 
indicate a photoacclimation response in the algae. 785 
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